DNA aptamer-mediated regulation of the hairpin ribozyme by human α-thrombin

نویسندگان

  • S. Hani Najafi-Shoushtari
  • Michael Famulok
چکیده

The combination of specific ligand-binding aptamers with hairpin ribozyme catalysis generates molecules that can be controlled by external factors. Here we have generated hairpin ribozymes that can be regulated by a short DNA aptamer specific for human α-thrombin. This was achieved by constructing a ribozyme variant harboring an RNA sequence complementary to the aptamer, to which the aptamer can hybridize forming a heteroduplex. In this way, the DNA aptamer completely abolishes the catalytic activity of the ribozyme, due to the formation of an inactive ribozyme conformation. However, in the presence of the aptamer's target protein human α-thrombin, the inhibitory effect of the DNA aptamer is competitively neutralized and the ribozyme is activated in a highly specific fashion. Protein-responsive allosteric ribozymes are proposed to act as tools with potential applications in medicine where fast detection of clinically relevant targets is required. © 2006 Elsevier Inc. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Evaluating target silencing by short hairpin RNA mediated by the group I intron in cultured mammalian cells

BACKGROUND The group I intron, a ribozyme that catalyzes its own splicing reactions in the absence of proteins in vitro, is a potential target for rational engineering and attracted our interest due to its potential utility in gene repair using trans-splicing. However, the ribozyme activity of a group I intron appears to be facilitated by RNA chaperones in vivo; therefore, the efficiency of sel...

متن کامل

High-resolution structures of two complexes between thrombin and thrombin-binding aptamer shed light on the role of cations in the aptamer inhibitory activity

The G-quadruplex architecture is a peculiar structure adopted by guanine-rich oligonucleotidic sequences, and, in particular, by several aptamers, including the thrombin-binding aptamer (TBA) that has the highest inhibitory activity against human α-thrombin. A crucial role in determining structure, stability and biological properties of G-quadruplexes is played by ions. In the case of TBA, K(+)...

متن کامل

Thrombin–aptamer recognition: a revealed ambiguity

Aptamers are structured oligonucleotides that recognize molecular targets and can function as direct protein inhibitors. The best-known example is the thrombin-binding aptamer, TBA, a single-stranded 15-mer DNA that inhibits the activity of thrombin, the key enzyme of coagulation cascade. TBA folds as a G-quadruplex structure, as proved by its NMR structure. The X-ray structure of the complex b...

متن کامل

Using photons to manipulate enzyme inhibition by an azobenzene-modified nucleic acid probe.

The ability to inhibit an enzyme in a specific tissue with high spatial resolution combined with a readily available antidote should find many biomedical applications. We have accomplished this by taking advantage of the cis-trans photoisomerization of azobenzene molecules. Specifically, we positioned azobenzene moieties within the DNA sequence complementary to a 15-base-long thrombin aptamer a...

متن کامل

Targeted cleavage: tuneable cis-cleaving ribozymes.

P osttranscriptional regulation of gene expression has become a popular method for studying gene function and elucidating networks of gene expression. A number of tools are available that allow investigators to regulate gene expression posttranscriptionally, including RNAi, antisense oligonucleotides, DNAzymes, and ribozymes (1). Each of these methods relies on complementary basepairing between...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006